DO NOW

If an arithmetic sequence is defined recursively as $a_1 = 5$ and $a_n = a_{n-1} + 4$,

- a. Find the common difference.
- b. Write the general rule and simplify to the explicit formula.
- c. Find the 15th term.

b.
$$Q_n = Q_1 + (n-1)d$$

 $Q_n = 5 + (n-1)(4)$
 $Q_n = 5 + 4n - 4$
 $Q_n = 4n + 1$

C.
$$\alpha_{15} = 4(15) + 1$$

 $\alpha_{15} = 60 + 1$
 $\alpha_{15} = 61$

9.5 Geometric Sequences

Geometric sequence-multiply by a common ratio, r, to find the next number.

*EXPONENTIAL FUNCTION

Example: 2, 6, 18, 54, 162...

Find r and the next two terms.

4.
$$3, 15, 75, 375...$$
 $r = 5$ $1875, 9375$

Write the first 5 terms of a geometric sequence as defined.

5.
$$a_1 = 2, r = 5$$

2, 10, 50, 250, 1250

6.
$$a_1 = -3, r = 2$$

 $-3, -6, -12, -24, -48$

7.
$$a_1 = 8, r = \frac{1}{2}$$

8.
$$a_1 = 4, r = -3$$

 $4 = 12, 36 = 108, 324$

Writing a geometric sequence recursively:

$$Q_n = Q_{n-1} \cdot r$$

 $Q_n \leftarrow \text{general term}$
 $Q_{n-1} \leftarrow \text{term before an}$
 $r \leftarrow \text{common ratio}$

Example: Given 2, 10, 50, 250... $\Gamma = 5$ $A_n = A_{n-1} \cdot \Gamma$ $A_n = A_{n-1} \cdot 5$

$$\left[a_n = 5 a_{n-1}\right]$$

Writing a geometric sequence explicitly (General Rule):

Example: Given 2, 10, 50, 250...

$$r = 5$$

$$a_{n} = a_{1} \cdot r^{n-1}$$

$$a_{n} = 2 \cdot 5^{n-1}$$

$$a_{n} = 2(5^{n-1})$$

9. Consider the geometric sequence: -3, -15, -75, -375.

a. Find r, the common ratio.

b. Find the explicit formula and simplify.

c. Find the 10th term in the sequence.

a.
$$r = 5$$

b. $a_n = a_1 \cdot r^{n-1}$
 $a_n = -3 \cdot 5^{n-1}$
c. $a_{10} = -3 \cdot 5^{10-1}$

C.
$$Q_{10} = -3.5^{10-1}$$

 $Q_{10} = -3.5^{9}$
 $Q_{10} = -3.1,953,125$
 $Q_{10} = -5,859,375$

- 10. If a geometric sequence is defined recursively as $a_1 = 6$ and $a_n = 3a_{n-1}$
 - a. Find the common ratio.
 - b. Write the general rule and simplify to the explicit formula.
 - c. Find the 8th term.

$$a. r=3$$

b.
$$a_n = a_1 \cdot r^{n-1}$$

b.
$$a_n = a_1 \cdot r^{n-1}$$

- 11. In the geometric sequence -7, x_2 , x_3 , 189... 04=189 a. Find r, the common ratio.
 - b. Find the missing terms x_2 and x_3 .
 - c. Find the 5th term.

$$a. a_n = a_i \cdot r^{n-1}$$

use
$$a_1 = -7$$

 $a_4 = 189$
 $189 = -7 \cdot r^{4-1}$

$$\frac{189}{-7} = r^3$$
$$-27 = r^3$$

$$\sqrt[3]{-27} = r$$

b.
$$\chi_2 = \lambda 1$$

C.
$$a_n = a_1 \cdot r^{n-1}$$

 $a_n = -7 \cdot (-3)^{n-1}$
 $a_5 = -7 \cdot (-3)^{5-1}$
 $a_5 = -7 \cdot (-3)^4$
 $a_5 = -7 \cdot 81$
 $a_5 = -567$

12. On the first swing, the length of the arc through which a pendulum swings is 24 inches. The length of each successive swing is $\frac{7}{8}$ of the preceding swing. Find the length of the arc on the fifth swing. (Round your answer to the nearest tenth).

$$a_{i} = 24$$
 $r = \frac{7}{8}$

$$a_n = a_1 \cdot r^{n-1}$$
 $a_n = 24 \cdot \left(\frac{7}{8}\right)^{n-1}$
 $a_5 = 24 \cdot \left(\frac{7}{8}\right)^{5-1}$

$$a_5 = 24 \cdot \left(\frac{7}{8}\right)^{5-1}$$

$$\alpha_5 = 24 \cdot (\frac{1}{8})^4$$
 $\alpha_5 = 24 \cdot (\frac{1}{8})^4$

HOMEWORK

Worksheet - HW 9.5